Given:
A wave described by: y₁(x, t) = A sin(kx - ωt + φ)
Its reflected counterpart with a negative amplitude: y₂(x, t) = -A sin(kx - ωt + φ)
The total displacement is the sum of the individual waves:
y(x, t) = y₁(x, t) + y₂(x, t) = A sin(kx - ωt + φ) - A sin(kx - ωt + φ)
Its reflected counterpart with a negative amplitude: y₂(x, t) = -A sin(kx - ωt + φ)
Point of Oblivion:
A point in space (x) and time (t) where the superposition of the original and reflected waves results in zero displacement (y(x, t) = 0).Mathematical Formulation:
- Superposition:
The total displacement is the sum of the individual waves:y(x, t) = y₁(x, t) + y₂(x, t) = A sin(kx - ωt + φ) - A sin(kx - ωt + φ)
2. Cancellation using Trigonometric Identity:
Using the identity sin(a) - sin(b) = 2 sin((a - b)/2) cos((a + b)/2):
y(x, t) = 2 A sin((kx - ωt + φ - (kx - ωt + φ)) / 2) cos((kx - ωt + φ + (kx - ωt + φ)) / 2)
Simplifying:
y(x, t) = 2 A cos(φ) cos(kx - ωt)
3. Conditions for Point of Oblivion:
For y(x, t) = 0, both cosine terms must equal zero:cos(φ) = 0:- This occurs when the phase constant (φ) is specifically 90° (π/2) or 270° (3π/2). These values correspond to zero points of the original sine wave.
- cos(kx - ωt) = 0: This happens when the argument (kx - ωt) is a multiple of 90°. This translates to specific combinations of x and t where the original wave is zero.
No comments:
Post a Comment